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Abstract

This paper reports the three-dimensional (3D) generalization of our previous 2D higher-order matched interface and
boundary (MIB) method for solving elliptic equations with discontinuous coefficients and non-smooth interfaces. New
MIB algorithms that make use of two sets of interface jump conditions are proposed to remove the critical acute angle
constraint of our earlier MIB scheme for treating interfaces with sharp geometric singularities, such as sharp edges, sharp
wedges and sharp tips. The resulting 3D MIB schemes are of second-order accuracy for arbitrarily complex interfaces with
sharp geometric singularities, of fourth-order accuracy for complex interfaces with moderate geometric singularities, and
of sixth-order accuracy for curved smooth interfaces. A systematical procedure is introduced to make the MIB matrix opti-
mally symmetric and banded by appropriately choosing auxiliary grid points. Consequently, the new MIB linear algebraic
equations can be solved with fewer number of iterations. The proposed MIB method makes use of Cartesian grids, stan-
dard finite difference schemes, lowest order interface jump conditions and fictitious values. The interface jump conditions
are enforced at each intersecting point of the interface and mesh lines to overcome the staircase phenomena in finite dif-
ference approximation. While a pair of fictitious values are determined along a mesh at a time, an iterative procedure is
proposed to determine all the required fictitious values for higher-order schemes by repeatedly using the lowest order jump
conditions. A variety of MIB techniques are developed to overcome geometric constraints. The essential strategy of the
MIB method is to locally reduce a 2D or a 3D interface problem into 1D-like ones. The proposed MIB method is exten-
sively validated in terms of the order of accuracy, the speed of convergence, the number of iterations and CPU time.
Numerical experiments are carried out to complex interfaces, including the molecular surfaces of a protein, a missile inter-
face, and van der Waals surfaces of intersecting spheres.
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1. Introduction

The numerical solution of elliptic equations with discontinuous coefficients and singular sources has
attracted much attention in the applied mathematics and scientific computing [5–7,13,16,21,26–29,31,-
32,34,36,41–43,46,61–63,65,66,68] since Peskin’s pioneer work in 1977 [57]. This class of problems have dem-
onstrated a growing impact to fluid dynamics [14,18,19,30,53], electromagnetics [23,24,33], material science
[25,27] and biologic systems [20,44,70,75]. Due to the lack of regularity in the solution, ordinary numerical
schemes, such as finite difference methods, finite element methods and spectral methods, cannot maintain
the designed order of convergence and even diverge in the worst scenario. It is very difficult to construct highly
accurate and efficient numerical methods for this class of problems. Apart from Peskin’s immersed boundary
method (IBM) [22,35,57–59], a number of other elegant methods have been proposed in the literature. Among
them, the ghost fluid method (GFM) proposed by Fedkiw, Osher and coworkers [15,45] is a relatively simple
and easy to use sharp interface approach. Finite element formulations [2,8,40,44] are more suitable for weak
solutions. An upwinding embedded boundary method was proposed by Cai and Deng [9] for dielectric media.
A second-order finite volume based method was proposed Oevermann and Klein [54], which uses bilinear
ansatz functions on Cartesian grids and compact stencils. A relevant, while quite distinct approach is the inte-
gral equation method for embedding complex geometry [49–51]. A major advance in the field was due to
LeVeque and Li [37], who proposed a remarkable second-order sharp interface scheme, the immersed interface
method (IIM). Their method has been improved for computational efficiency and matrix optimization over
the past decade [1,12,38,39,62] and widely applied in practical problems. A new trend in this field is the con-
struction of higher-order (interface) methods [21,50,63,71,73,74] that are particularly desirable for problems
involving both material interfaces and high frequency waves where conventional local adaptive refinement
approaches do not work well. Typical examples are the interaction of turbulence and shock, and high fre-
quency wave propagation in inhomogeneous media. Simple Cartesian grids are preferred in these situations
because of the bypass of the mesh generation, better temporal stability and the availability of fast algebraic
solvers. Recently, we have proposed a systematic higher-order method, the matched interface and boundary
(MIB) method, for treating electromagnetic wave propagation and scattering in dielectric media [71]. In par-
ticular, we proposed a way to avoid the use of high order jump conditions, which require large stencils and are
numerically unstable in higher-order schemes as analyzed in our work. We found that by repeatedly using only
the lowest order jump conditions, an arbitrarily higher-order interface scheme can be constructed in principle
[71]. This idea was applied to the fourth-order beam equation with free boundary conditions [72]. More
recently, we have generalized the earlier MIB method for solving elliptic equations with curved interfaces
[73,74]. The MIB method makes use of simple Cartesian grids, standard finite difference schemes, lowest order
physical jump conditions and fictitious domains. The physical jump conditions are enforced at each intersect-
ing point of the interface and the mesh lines. Because of the use of the subgrid information at the intersecting
points, the MIB method overcomes the staircase phenomena of the finite difference approximation for com-
plex geometry and can be of arbitrarily higher-order convergence in principle when the lowest order physical
jump conditions are repeatedly enforced. MIB schemes of up to 16th-order accuracy have been constructed for
straight interfaces [71,73]. For curved interfaces, fourth- and sixth-order MIB schemes have been demon-
strated [73,74]. Most recently, we have proposed an interpolation formulation of the MIB method that does
not need the use of the fictitious values [74]. We have shown that our interpolation formulation of the MIB
method is equivalent to our earlier fictitious domain formulation [74]. We have constructed a three-dimen-
sional (3D) MIB scheme that is of second-order convergence for complex interfaces free of geometric singu-
larities [75].

While much attention was focused on elliptic equations with smooth interfaces, little work has been done
on the mathematical treatment of geometric singularities, such as sharp-edged, sharp-wedged and sharp-
tipped interfaces. This class of problems are ubiquitous in science and engineering, such as wave-guides anal-
ysis [52], electromagnetic wave scattering and propagation [10,55,56], friction modeling [64], plasma-surface
interaction [47] and turbulent-flow [4]. The presence of geometric singularities, such as cusps and self-intersect-
ing surfaces, is a major obstacle to the accuracy, convergence and stability of the numerical solution of the
Poisson–Boltzmann equation for the electrostatic analysis of biomolecules [70]. Technically, it is much more
challenging to construct efficient numerical methods for this class of problems due to the lack of regularity in
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the interface. Because the gradient near the tip of a sharp-edged interface is not well defined in the classical
sense, the aforementioned interface methods might not maintain the designed accuracy. A standard approach
to these problems is the use of local adaptive approaches [52,56], which exhibit reduced convergence rates and
require dramatic mesh refinements in the vicinity of geometric singularities [11]. These approaches fail to work
if the solution is highly oscillatory due to the so called pollution effect [3]. A remarkable result, due to Hou and
Liu [26], was of 0.8th-order convergence obtained with a 2D finite element formulation for elliptic interface
problems with geometric singularities. Their method is convenient for geometric singularity induced weak
solutions. Recently, we have developed a 2D second-order MIB treatment of sharp-edged interfaces [69].
Unlike the Galerkin formulation, our MIB scheme does not specifically handle the geometric singularity
induced weak solutions. A standard approach that multiplies the solution with an appropriate polynomial
[56] was incorporated in our MIB method to deal with geometry induced weak solutions [69]. The MIB is
found to be insensitive to the location of tips. The domain extension on the tip can be computed from any
direction by extrapolation without affecting the result [69]. An explanation is that although gradients on
the tip extrapolated from different directions contradict each other, different sets of interface conditions from
different directions near the tip are consistent with each other for a given domain extension.

Another challenge that is encountered in interface schemes, particularly in higher-order ones, is the
asymmetric discretization matrices which render convergence problems in solving the resulting linear alge-
braic equations. This difficulty is deteriorated by complex interface geometry—the matrices usually become
more asymmetric under complex geometric constraints. Moreover, the higher convergence order, the larger
matrix bandwidth will be for an interface scheme. Furthermore, discretization matrices are usually not
diagonally dominant due to the interface treatment. This causes slow convergence as well. A discrete max-
imum preserving scheme was proposed to accelerate the convergence of the IIM [12]. In our earlier MIB
method, a large number of iterations is required to solve the linear algebraic equations due to the asym-
metric matrix.

The objective of the present work is threefold. First, we extend our earlier 2D higher-order MIB schemes
[71,73] to 3D. We report some first known sixth-order 3D results for elliptic problems with smooth interfaces.
Such schemes are particularly efficient for problems involving both material interfaces and high frequency
waves. Second, we generalize our earlier 2D second-order MIB method for geometric singularities [69] to
3D. Our earlier 3D MIB scheme does not maintain the designed second accuracy for molecular surfaces of
proteins due to the presence of non-smooth interfaces [75]. In this work, we demonstrate the second-order con-
vergence for arbitrarily complex interfaces with arbitrary geometric singularities. In fact, there is a critical
acute angle restriction in our earlier 2D MIB scheme for sharp-edged interfaces [69]. A new algorithm, which
makes use of two interface intersecting points for sharp-edged interfaces, is proposed to reserve this problem.
We demonstrate that 3D fourth-order MIB schemes can be constructed for complex interfaces and interfaces
with moderate geometric singularities. Finally, due to the constraint of complex interface geometry, it is
impossible to create a high order MIB scheme with a symmetric discretization matrix. In this work, we have
addressed this problem by making the MIB matrix optimally symmetric and banded. Here, by ‘optimally sym-
metric and banded’ we mean as symmetric and banded as possible under a given geometric constraint. The
matrix optimization is achieved by an appropriate selection of auxiliary grid points. This optimization proce-
dure dramatically improves the convergence property of the present MIB method. An essential feature of the
proposed MIB method is that it locally simplifies a 2D or a 3D interface problem into 1D-like ones. As a
result, the MIB method is able to systematically achieve higher-order convergence and to efficiently deal with
geometric singularities. The proposed MIB algorithm, particularly its matrix acceleration and treatment of
singularities, provides the crucial technical foundation to a new generation of Poisson–Boltzmann equation
solvers for the electrostatic analysis of biomolecules [70].

In the next two sections, the theoretical formulation and the computational algorithm are given to the 3D
MIB method for elliptic interface problems. Detailed consideration of topological variations is given, partic-
ularly for 3D geometric singularities. New algorithm is proposed for the sharp-edged interfaces and tips. The
MIB matrix is made optimally symmetric and banded. A systematic procedure is introduced to construct 3D
higher-order MIB schemes. The proposed MIB method is extensively validated by benchmark tests, such as
the interfaces of missile, protein, flower and intersecting spheres. This paper ends with a conclusion to sum-
marize the main points.
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2. Theory and algorithm

2.1. General setting of the MIB method for elliptic interface problems

Consider a given interface C which divides an open bounded domain X 2 R3 into disjoint open subdo-
mains, domain X� and domain X+, i.e., X = X� [ X+ [ C. We solve the following 3D elliptic equation
r � ðbðx; y; zÞruðx; y; zÞÞ � jðx; y; zÞuðx; y; zÞ ¼ qðx; y; zÞ; x; y; z 2 X ð1Þ

with variable coefficients b(x,y,z) and j(x,y,z) which may admit jumps at the interface C. To make the prob-
lem well-posed, this equation should be solved with appropriate boundary conditions and two interface jump
conditions
½u� ¼ uþ � u�; ð2Þ
½bun� ¼ bþruþ � n� b�ru� � n; ð3Þ
where n = (nx,ny,nz) is the normal direction of the interface. To achieve higher-order convergence, the inter-
face jump conditions are to be rigorously enforced at each intersecting point of the interface and the Cartesian
mesh lines, which means the incorporation of subgrid information for overcoming the staircase phenomena. In
the MIB approach, we seek to reduce the 3D interface problem into 1D-like ones locally so that the standard
higher-order finite difference schemes can be implemented for the discretization.

As the interface normal direction varies on the interface, it is necessary to define a set of local coordinate at
each intersecting point of the interface and the Cartesian mesh. At a specific intersecting point, it is convenient
to denote the local coordinates (n,g,f) such that n is along the normal direction and g is in the x–y plane. The
coordinate transformation can be given as
n

g

f

2
64
3
75 ¼ p �

x

y

z

2
64
3
75; ð4Þ
where the transformation matrix p has the form
p ¼
sin / cos h sin / sin h cos /

� sin h cos h 0

� cos / cos h � cos / sin h sin /

2
64

3
75: ð5Þ
Here h and / are the azimuth and zenith angles with respect to the normal direction n, respectively. In the new
coordinates, the jump condition (3) can be discretized as
½bun� ¼ bþðsin / cos huþx þ sin / sin huþy þ cos /uþz Þ � b�ðsin / cos hu�x þ sin / sin hu�y þ cos /u�z Þ: ð6Þ
Without creating higher-order jump conditions, we can generate two additional jump conditions by differen-
tiating Eq. (2) with respect to the tangential direction g and the binormal direction f
½ug� ¼ ð� sin huþx þ cos huþy Þ � ð� sin hu�x þ cos hu�y Þ; ð7Þ
½uf� ¼ ð� cos / cos huþx � cos / sin huþy þ sin /uþz Þ � ð� cos / cos hu�x � cos / sin hu�y þ sin /u�z Þ: ð8Þ
In principle, we can generate more jump conditions by further differentiating these low order jump conditions.
However, a byproduct of such a procedure is the creation of higher-order derivatives and cross-derivatives,
whose evaluation often involves larger stencils and is unstable for constructing higher-order interface schemes
[71]. The proposed MIB method makes use of only lower-order jump conditions. Therefore, we end up with
four interface jump conditions, i.e., Eqs. (2), (6), (7) and (8), which can be used to determine four desired un-
known quantities related to the intersecting point of the interface and the mesh. In the MIB method, we extend
the computational domains with fictitious values on both sides of the interface so that the standard finite dif-
ference scheme can be applied on a smooth domain near the interface without the loss of designed conver-
gence. This is done along a mesh line at a time, so that our MIB method is locally a 1D-like scheme for a
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higher dimensional interface. Fictitious values can be determined by the aforementioned four jump conditions.
However, in association with four jump conditions there are six partial derivatives, uþx ; u

�
x ; u

þ
y ; u

�
y ; u

þ
z , and u�z ,

which have to be computed right on the intersecting point between the interface and the meshline. Numeri-
cally, these computations are carried out within appropriate subdomains near the interface, i.e., uþx ; u

þ
y and

uþz in X+, and u�x ; u
�
y and u�z in X�. For slightly curved smooth interfaces, it is usually quite easy to calculate

all the six partial derivatives. However, for non-smooth and/or arbitrarily complex interfaces, it is often very
difficult to compute all of these partial derivatives due to geometric constrains. To make the present MIB
scheme applicable to real world problems, we eliminate two partial derivatives that are the most difficult to
compute by using two appropriate jump conditions. The selection of two eliminated partial derivatives is pur-
sued as follows.

1. All fictitious values on all irregular points will be determined. At an intersecting point between the interface
and an x-mesh line, two fictitious values on the x-mesh line will be determined.

2. Two derivatives along this mesh line must be kept. In the above case, uþx and u�x must be kept.
3. We therefore select two partial derivatives from uþy ; u

þ
z ; u

�
y and u�z . We first check if the interface local geom-

etry allows us to easily compute uþy and uþz in X+. If so, we will eliminate u�y and u�z —it is done. If one of uþy
and uþz cannot be computed, say uþz , we will check whether u�z can be compute in X�. If yes, it is done. If u�z
cannot be computed either, we will check whether u�y can be computed. If yes, it is done. If no, the scheme
fails at this intersecting point. We will try to determine the nearby fictitious values from other nearby inter-
secting points.

The mathematical operation of the elimination is derived below. From Eq. (4), we have
un

ug

uf

2
64

3
75 ¼ p �

ux

uy

uz

2
64

3
75: ð9Þ
Therefore, Eqs. (6)–(8) can be rewritten as follows:
½bun�
½ug�
½uf�

2
64

3
75 ¼ C �

uþx
u�x
uþy
u�y
uþz
u�z

2
666666664

3
777777775
; ð10Þ
where
C ¼
C1

C2

C3

2
64

3
75 ¼

p11b
þ �p11b

� p12b
þ �p12b

� p13b
þ �p13b

�

p21 �p21 p22 �p22 p23 �p23

p31 �p31 p32 �p32 p33 �p33

2
64

3
75: ð11Þ
Here pij is the ijth component of the transformation matrix p and Ci represents the ith row of C. After the
elimination of the lth and mth elements of the array ðuþx ; u�x ; uþy ; u�y ; uþz ; u�z Þ, Eq. (10) becomes
a½bun� þ b½ug� þ c½uf� ¼ ðaC1 þ bC2 þ cC3Þ �

uþx
u�x
uþy
u�y
uþz
u�z

2
666666664

3
777777775
; ð12Þ
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where
Fig. 1.
and (i,
lines, i
in this
a ¼ C2lC3m � C3lC2m;

b ¼ C3lC1m � C1lC3m;

c ¼ C1lC2m � C2lC1m:

ð13Þ
Therefore, two remaining jump conditions, Eqs. (2) and (12), are to be used to determine two fictitious values
near the interface along a specific mesh line at a time. To construct higher-order interface schemes, the above
procedure can be systematically repeated to determine fictitious values along other two mesh lines and at other
interface locations. A more explicit and alternative description of this elimination procedure can be found in
Ref. [75].

Alternatively, for very simple geometry, one may determine three or four fictitious values at a time by using
three or four jump conditions. However, such a method will have to approximate more partial derivatives and
involve more grid values. Consequently, the resulting matrix will be less symmetric and more iterations will be
required to solve the linear algebraic equation.

In the present work, we propose a novel algorithm to deal with sharp-edged interfaces. Specifically, when
there is a very narrow interface or a thin region enclosed by two interfaces, two sets of interface jump condi-
tions at two intersecting points will be used to determine a few fictitious values together, see Section 2.5. This
algorithm is developed to remove the acute angle constraint in our earlier 2D MIB method [69]. It gives us
flexibility to handle arbitrarily complex geometry and geometric singularities. In summary, we determine fic-
titious values along a mesh line at time, and locally reduce a 3D interface problem into 1D-like ones.

2.2. Treatment of smooth interfaces—an illustration

Considering a geometry illustrated in Fig. 1, the interface intersects the kth y-mesh line on the y–z plane at
point (x0,y0,z0). Two fictitious values fi,j,k and fi,j+1,k are to be determined on irregular grid points. We denote
the left domain as X+ and the right one as X�. Here, u+, u�, uþy and u�y are easily expressed as interpolations
and standard finite difference (FD) schemes from information in X� and X+, respectively
uþ ¼ ðw0;j�1;w0;j;w0;jþ1Þ � ðui;j�1;k; ui;j;k; fi;jþ1;kÞT;
u� ¼ ðw0;j;w0;jþ1;w0;jþ2Þ � ðfi;j;k; ui;jþ1;k; ui;jþ2;kÞT;
uþy ¼ ðw1;j�1;w1;j;w1;jþ1Þ � ðui;j�1;k; ui;j;k; fi;jþ1;kÞT;
u�y ¼ ðw1;j;w1;jþ1;w1;jþ2Þ � ðfi;j;k; ui;jþ1;k; ui;jþ2;kÞT;

ð14Þ
where wn,m denote FD weights, which are generated by using the standard Lagrange polynomials [17]. The first
subscript n represents either the interpolation (n = 0) or the first order derivative (n = 1) at interface point
(xo,yo,zo), while their second subscript is for the node index. We only need to compute two of the remaining
Illustration of a smooth interface. The kth y mesh line intersects the interface at point (xo,yo,zo). A pair of irregular points (i, j,k)
j + 1,k), in red d, is on the kth y-mesh line. Type I auxiliary points are in blue m. Type II auxiliary points are in blue d. Auxiliary
n red dashed lines along the x- and z-directions, are used to calculate u�x ; u

þ
x ; u

�
z and uþz . (For interpretation of the references to color

figure legend, the reader is referred to the web version of this article.)
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four interface quantities. If u�x and u�z can be conveniently computed, then uþx and uþz will be eliminated by
using Eqs. (12) and (13) with l = 1 and m = 5.

To approximate uþz or u�z , we need three u values along the auxiliary line y = yo on the y–z plane, see Fig. 1.
Unfortunately, these values are unavailable on the grid and have to be approximated by interpolation schemes
along the y-direction. This means six more auxiliary points are involved. In practice, one of these two deriv-
atives can be easily found. In the situation shown in Fig. 1, u�z can be represented as follows:
u�z ¼ ½w1;k;w1;kþ1;w1;kþ2� �
w0;j w0;jþ1 w0;jþ2 0 0 0 0 0 0

0 0 0 w00;j w00;jþ1 w00;jþ2 0 0 0

0 0 0 0 0 0 w�0;j w�0;jþ1 w�0;jþ2

2
64

3
75

� ½fi;j;k; ui;jþ1;k; ui;jþ2;k; ui;j;kþ1; ui;jþ1;kþ1; ui;jþ2;kþ1; ui;j;kþ2; ui;jþ1;kþ2; ui;jþ2;kþ2�T; ð15Þ
where we use superscripts on w to denote different sets of FD weights [17]. Similarly, u�x can be computed
along the auxiliary line y = yo on the x–y plane, the dashed line shown in Fig. 1. By choosing l = 1 and
m = 5 in Eq. (13), we can eliminate uþx and uþz . Then, by solving Eqs. (2) and (12) together, two fictitious values
fi,j,k and fi,j+1,k can be easily represented in terms of 16 function values around them.

Note that the calculation of fictitious values strongly depends on whether auxiliary points can be found in
proper subdomains. At the second-order accuracy, this calculation is quite easy for smooth interfaces and rel-
atively dense meshes. However, it is a challenge to determine all the fictitious values for higher-order schemes
and with the presence of geometric singularities. In order to discuss this issue clearly in the following sections,
we define type I auxiliary points as the auxiliary points that are only used to interpolate u values on auxiliary
lines passing through the intersecting point. Type II auxiliary points are defined as the auxiliary points that are
in the same line with two irregular points. For instance, in the situation depicted in Fig. 1, there are six type I
auxiliary points used to interpolate u value at ðxo; yo; z

�
oÞ and ðxo; yo; z

0
oÞ, which are used to calculate u�z .

Another six type I auxiliary points are used to calculate u�x in a similar way. Here, (i, j � 1,k) and
(i, j + 2,k) are two type II auxiliary points.

2.3. Matrix optimization

In the calculation of each pair of fictitious values, 12 type I auxiliary points are involved. In most situations,
the locations of type I auxiliary points are not unique. The utility of this non-uniqueness was not explored in
our previous MIB schemes. In fact, the selection of type I auxiliary points has a substantial impact to the con-
vergence property of the MIB matrix. Essentially, it is important to make the matrix optimally symmetric and
banded so as to accelerate the speed of the convergence of linear algebraic solvers. However, in practice, it is
not an easy task to choose type I auxiliary points because of the complex geometric constraints. In our earlier
MIB method, denoted MIB I, our consideration was dictated by geometric complexities and little attention
was paid to the matrix optimization. Since the locations of type I auxiliary points are very flexible, a system-
atical strategy is introduced to select optimal type I auxiliary points so as to maximize the speed of matrix
convergence and minimize the numerical error of the interface scheme. This new approach, denoted as
MIB II, is described as follows.

A typical interface topology is depicted in Fig. 2. In this case, 6 type I auxiliary points are required to cal-
culate uþz or u�z . Here uþz requires 6 type I auxiliary points all from X+ while u�z requires 6 type I auxiliary
points all from X�. Since normally only one of these two derivatives are computed, one could select either
X+ or X�.

The next step is to decide which two mesh lines should be used to accommodate for these 6 type I auxiliary
points. The present MIB II method prefers using mesh lines zk�1 and zk+1 together, while the earlier MIB I
method typically does not choose this kind of combinations. The strategic difference of MIB I and MIB II
in this step is indicated in Fig. 2. In the present work, the essential idea is to select type I auxiliary points
as close to the intersecting point as possible. The CPU time can be significantly reduced in MIB II by using
the new strategy, especially when the MIB method are applied to large computational domains and/or com-
plicated interfaces.
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In order to optimize the proposed MIB II method for accelerating the matrix convergence and minimizing
numerical errors, the selection of type I auxiliary points is separated into three steps:

� Step 1: Select a subdomain, X+ or X�. In solving the Poisson–Boltzmann equation, there is a tendency to
select the out subdomain such that the interference with the charge singularity can be avoided. In general,
an appropriate subdomain is selected to optimize the matrix property.
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Fig. 4. Four sets of type I auxiliary points on a single mesh line zk+1.
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� Step 2: Select a set of mesh lines, i.e., a pair of mesh lines, as shown in Fig. 3a–c. In normal cases, the
scheme in Fig. 3a is preferred in our MIB II methods.
� Step 3: Select two sets of grid points from 4 different options shown in Fig. 4i–iv. Note that an option can be

used twice. In normal cases, choice of 4i or ii, or their combination is preferred. However, the selected grid
points must be within the same selected subdomain.

The process of selecting type I auxiliary points is described in details in the following pseudocode:

A pseudocode for the selection of Type I auxiliary points

1: SD = X+; . Select a subdomain (SD) to which all 6 points should belong
2: MLS = (a); . Select a preferred mesh line set MLS

3: Search for 3 points in SD on each mesh line in MLS, following the order of (i), (ii), (iii), and (iv).
4: if all 6 points are found on these two mesh lines then

5: Return;
6: else

7: MLS = (b);
8: Search for 3 points in the SD on each mesh line in the MLS, following the same order described

above.
9: if all 6 points are found on these two mesh lines then

10: Return;
11: else

12: MLS = (c);
13: Search for 3 points in the SD on each mesh line in the MLS, following the same order described

above.
14: if all 6 points are found on these two mesh lines then

15: Return;
16: else

17: Goto 1, choose SD = X� and repeat the rest;
18: end if

19: end if

20: end if

2.4. Type I auxiliary points

Indeed, the proposed selection strategy of type I auxiliary points not only leads to optimally symmetric MIB
matrices, but also introduces additional flexibility to the MIB method. For instance, in the situation depicted in
Fig. 5a, type I auxiliary points can only be (i, j � 2,k � 1), (i, j � 1,k � 1), (i, j,k � 1) on mesh line z = zk�1 and
(i, j � 2,k + 1), (i, j � 1,k + 1), (i, j,k + 1) on mesh line z = zk+1. Therefore, the present MIB II allows one to use
mesh lines from both upper and lower quadrants, i.e., z = zk�1 and z = zk+1 in this situation, simultaneously.

In dealing with complex interface geometry, there are a few cases in which type I auxiliary points cannot all
be found by following the aforementioned schemes. For example, in the situation depicted in Fig. 5b, type I
auxiliary points can only be (i, j � 1,k � 1), (i, j + 1,k � 1), (i, j + 2,k � 1) on mesh line z = zk�1, and
(i, j � 2,k + 1), (i, j � 1,k + 1) and (i, j,k + 1) on mesh line z = zk+1. Similarly, there is another kind of cases
in which type I auxiliary points cannot be found in consecutive mesh lines. One may need to use z = zk�1

and z = zk+2 together for the calculation of u�z or uþz instead of mesh lines z = zk�1 and z = zk+1. To resolve
these two kinds of difficulties, we first check whether primary fictitious values can be computed from other
directions or other intersecting points. If this is true, then we just compute the primary fictitious values from
another direction. If it is not true, then a new scheme is introduced to allow the use of non-consecutive type I
auxiliary points as in Fig. 5b or non-consecutive z-mesh lines as in Fig. 5c. Note that when non-consecutive
type I auxiliary points or non-consecutive z-mesh lines are used in interpolations, the matrix becomes less



a b c

Fig. 5. Type I auxiliary points and other three points on mesh line zk, all in blue d, are used together to derive uþz . Situation (a): Type I
auxiliary points locate on mesh lines zk�1 and zk+1; Situation (b): Type I auxiliary points locate separately on mesh line zk�1; Situation

(c): Type I auxiliary points locate on nonconsecutive mesh lines zk�2 and zk+1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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symmetric and the accuracy of the interpolations would be slightly reduced. However, our numerical tests
indicate that the accuracy of the fictitious values solved by using the new scheme is still comparable to that
of other fictitious values solved by our previous schemes. An explanation is that the interpolation by type I
auxiliary points only plays a minor role in the whole calculation of fictitious values. In addition, the situation
depicted in Fig. 5b and c often disappears when the mesh is refined. Nonetheless, schemes similar to those in
Fig. 5b and c should be avoided whenever possible.

2.5. Type II auxiliary points

Unlike type I auxiliary points which are only used in Eq. (12) and have many options as described above,
type II auxiliary points are directly involved in all the jump condition equations and have unique locations
once the corresponding irregular points are selected. Furthermore, in the above scheme for smooth interfaces,
type II auxiliary points and the irregular points next to them must be in the same subdomain. For instance, to
find the fictitious values at irregular points (i, j,k) and (i, j + 1,k), auxiliary point (i, j � 1,k) and irregular point
(i, j,k) must be in the same subdomain, and similarly, auxiliary point (i, j + 2,k) and irregular point (i, j + 1,k)
must be in the same subdomain too.

However, when the interface has large curvatures, sharp edges, sharp wedges, tips or corners, there are
‘improper’ regions [69] where the required auxiliary points cannot be found in the same subdomain. For exam-
ple, as depicted in Fig. 6, irregular point (i, j,k) has no auxiliary point associated with it inside the same sub-
domain. This ‘improper’ region cannot be eliminated by refining the mesh. The same situation occurs in the
a b

Fig. 6. Interface singularities and type II auxiliary points. Type II auxiliary points and two irregular points, all in blue d, are used in all
discretization of jump conditions about interface point (xo,yo,zo) and an additional jump condition about the second interface point.
Situation (a): Type II auxiliary point (i, j � 1,k) and irregular point (i, j,k) are in different subdomains, which creates a second interface
point ðx0o; y 0o; z0oÞ; Situation (b): Type II auxiliary point (i, j + 2,k) and irregular point (i, j + 1,k) are in different subdomains, which creates a
second interface point ðx�o; y�o; z�oÞ. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)



612 S. Yu, G.W. Wei / Journal of Computational Physics 227 (2007) 602–632
neighboring mesh lines if the mesh is doubled. The auxiliary points in the ‘improper’ region lead to inconsis-
tence between the number of unknowns and the number of jump conditions.

The MIB schemes for sharp-edged interfaces [69] were developed to deal with this situation. In Ref. [69], the
secondary fictitious points were introduced to replace the role of type II auxiliary points in the ‘improper’
region. Secondary fictitious values are computed by appropriate interpolations and are used as auxiliary
points to determine primary fictitious values. Consequently, the number of unknowns can be reduced, and
the resulting unknowns can be solved successfully. This MIB scheme gives satisfactory results and has been
used in the present work for geometric singularities. However, it has a critical acute angle limitation because
the scheme depends on a priori calculation of secondary fictitious values. When edges become very sharp, it is
likely that no secondary fictitious value can be computed around the primary fictitious point. Here, we present
a new scheme that deals with sharp-edged problems by using an additional interface condition to solve pri-
mary fictitious value directly. This new scheme therefore removes the critical acute angle limitation in our ear-
lier MIB method [69].

2.5.1. Second-order scheme

Consider the situation depicted in Fig. 6a, type II auxiliary point (i, j � 1,k) and irregular point (i, j,k) are
not on the same subdomain. Fictitious values cannot be calculated directly from Eqs. (2) and (12). Assuming
that point (i, j � 1,k) is in X� with secondary fictitious value fi,j�1,k. Then, Eq. (2) can be discretized with pri-
mary fictitious values, fi,j,k, fi,j+1,k and secondary fictitious value fi,j�1,k
½u� ¼ ðw0;j�1;w0;j;w0;jþ1Þ � ðfi;j�1;k; ui;j;k; fi;jþ1;kÞT � ðw0;j;w0;jþ1;w0;jþ2Þ � ðfi;j;k; ui;jþ1;k; ui;jþ2;kÞT: ð16Þ

Eq. (12) can be discretized in the same manner by simply replacing all the ui,j�1,k with the secondary fictitious
value fi,j�1,k.

To solve for three unknowns, fi,j,k, fi,j+1,k and fi,j�1,k, one more equation is needed. For this purpose, we
make use of another interface intersecting point ðx0o; y0o; z0oÞ located between (i, j � 1,k) and (i, j,k). Note that
this interface intersecting point always exists in the situation that (i, j � 1,k) and (i, j,k) are not on the same
subdomain. We should use the jump condition of the function, which, unlike the flux jump condition, does
not introduce any additional derivative. The jump condition at the intersecting point ðx0o; y0o; z0oÞ can be discret-
ized as
½u�0 ¼ ðw00;j�1;w
0
0;j;w

0
0;jþ1Þ � ½ðfi;j�1;k; ui;j;k; fi;jþ1;kÞT � ðui;j�1;k; fi;j;k; ui;jþ1;kÞT�: ð17Þ
Combining Eqs. (16), (17) and modified Eq. (12), the primary fictitious values fi,j,k and fi,j+1,k can be repre-
sented in terms of ui,j�1,k, ui,j,k, ui,j+1,k, ui,j+2,k and other 12 auxiliary points located in x–y and y–z planes.

In the situation depicted in Fig. 6b, auxiliary point (i, j + 2,k) and irregular point (i, j + 1,k) are not on the
same subdomain. The secondary fictitious value fi,j+2,k is used to replace ui,j+2,k in the discretization of Eqs. (2)
and (3). By use of the jump condition on the interface intersecting point ðx�o; y�o; z�oÞ located between (i, j + 1,k)
and (i, j + 2,k), the third equation can be discretized as
½u�� ¼ ðw�0;j;w�0;jþ1;w
�
0;jþ2Þ � ½ðui;j;k; fi;jþ1;k; ui;jþ2;kÞT � ðfi;j;k; ui;jþ1;k; fi;jþ2;kÞT�: ð18Þ
Eq. (2) can then be discretized with primary fictitious values, fi,j,k, fi,j+1,k and secondary fictitious value fi,j+2,k
½u� ¼ ðw0;j�1;w0;j;w0;jþ1Þ � ðui;j�1;k; ui;j;k; fi;jþ1;kÞT � ðw0;j;w0;jþ1;w0;jþ2Þ � ðfi;j;k; ui;jþ1;k; fi;jþ2;kÞT: ð19Þ
Eq. (12) can be discretized in the same manner by replacing all the ui,j+2,k by the secondary fictitious value
fi,j+2,k.

Combining Eqs. (18), (19) and the modified Eq. (12), the primary fictitious values fi,j,k and fi,j+1,k can still be
represented in terms of ui,j�1,k, ui,j,k, ui,j+1,k, ui,j+2,k and other 12 auxiliary points located in x�y and y–z planes.

Note that the above scheme assumes that either ui,j+1,k and ui,j+2,k locate on the same subdomain as shown
in Fig. 6a, or ui,j�1,k and ui,j,k locate on the same subdomain as shown in Fig. 6b. That is, there is only one
secondary fictitious value needed, which is fi,j�1,k in Fig. 6a or fi,j+2,k in Fig. 6b. Therefore, one more equation,
Eq. (17) or Eq. (18), is enough to resolve the situation depicted in Fig. 6a or Fig. 6b, respectively. This is gen-
erally true in our second-order MIB scheme.
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2.5.2. Third-order scheme

The main obstacle in constructing higher-order interface schemes for arbitrarily complex interfaces is the
presence of geometric singularities. It is important to understand what high order interface schemes one
can construct for a sharp-edged and sharp-tipped interface depicted in Fig. 6a. To this end, we discuss the
feasibility of a third-order scheme. However, we have to relax some rules in the MIB method in order to con-
struct a third-order one. Specifically, we need to admit asymmetric or one-sided discretization schemes near
the interface, instead of purely central finite differences as employed in our earlier MIB method. To discretize
Eq. (1) up to the third-order accuracy at a typical point (i, j,k) around the singularity depicted in Fig. 6a, three
fictitious values are required for a non-central finite difference scheme. Let us denote them as fi,j+2,k, fi,j+1,k and
fi,j�1,k. In addition, fictitious value fi,j,k is required for the third-order non-central discretizations at points
(i, j � 1,k) and (i, j + 1,k). Therefore, around the typical singular point (i, j,k), four primary fictitious values
are to be solved. Consequently, we need to discretize four jump conditions around two interface intersecting
points, (x,y,z) and ðx0o; y0o; z0oÞ. The first two equations are
½u� ¼ uþ � u�;

½u0� ¼ u0þ � u0�;
ð20Þ
which can be discretized with function values and four unknowns, fi,j,k, fi,j+1,k, fi,j�1,k and fi,j+2,k
uþ ¼ ðw0;j�1;w0;j;w0;jþ1;w0;jþ2Þ � ðfi;j�1;k; ui;j;k; fi;jþ1;k; fi;jþ2;kÞT;
u� ¼ ðw0;j;w0;jþ1;w0;jþ2;w0;jþ3Þ � ðfi;j;k; ui;jþ1;k; ui;jþ2;k; ui;jþ3;kÞT;
u0þ ¼ ðw00;j�1;w

0
0;j;w

0
0;jþ1;w

0
0;jþ2Þ � ðfi;j�1;k; ui;j;k; fi;jþ1;k; fi;jþ2;kÞT;

u0� ¼ ðw0;j�2;w0;j�1;w0;j;w0;jþ1Þ � ðui;j�2;k; ui;j�1;k; fi;j;k; ui;jþ1;kÞT:

ð21Þ
The other two jump conditions are given by Eq. (12) at points (xo,yo,zo) and ðx0o; y 0o; z0oÞ, respectively. Two
pairs of partial derivatives, u�x ; u

�
z ; u

0þ
x , and u0þz at two intersecting points are eliminated. Here, uþy ; u

�
y ; u

0þ
y and

u0�y can be discretized in a similar way as that in Eq. (21) for u+, u�, u
0+ and u

0�. The discretizations of uþz
(or u�z ) and uþx (or u�x ) involve 2 · 2 · 3 type I auxiliary points around (xo,yo,zo). Similarly, the approximations
of u0þz (or u0�z ) and u0þx (or u0�x ) take another 2 · 2 · 3 type I auxiliary points around ðx0o; y 0o; z0oÞ. After obtained
all the fictitious values, the third-order discretization of the elliptic equation can be achieved without introduc-
ing additional difficulty. The fourth-order central finite difference discretization should be used away from the
interface. While near the interface, third-order non-central finite difference discretization can be used. This
scheme is as feasible as the second-order MIB scheme for geometric singularities. However, it is not clear
at this point whether a truly fourth-order MIB scheme can be constructed for arbitrarily complex interfaces
with sharp geometric singularities. In the following subsection, we describe 3D higher-order MIB schemes for
smooth interfaces and for interfaces with moderate geometric singularities.

2.6. Higher-order MIB algorithms

The MIB method was originally proposed as an arbitrarily higher-order interface algorithm [71]. The
fourth- and sixth-order MIB schemes in 2D have been developed for curved interfaces [73,74]. The 3D gen-
eralization of higher-order MIB schemes is described in this work. In brief, an nth-order MIB method means
the use of the nth-order finite difference discretization. Therefore, more irregular points, and thus more
fictitious values are required in our fictitious domain formulation, although an equivalent interpolation for-
mulation can be constructed to avoid the use of fictitious values. On the other hand, because we avoid using
higher-order interface jump conditions, the number of interface conditions remains the same. Therefore,
lower-order jump conditions are repeatedly used as proposed in our earlier paper [71]. The basic procedure
is to first generate a pair of fictitious values of required nth-order accuracy around an interface intersecting
point with given lower-order interface jump conditions. By repeatedly using the same set of jump conditions,
we then add two more fictitious values at a time until all the required fictitious values on a mesh line are deter-
mined. This procedure is repeated for other interface intersecting points and other mesh lines. Finally, the
elliptic equation is solved by the nth-order central finite difference scheme with appropriate fictitious values.
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2.6.1. Generation of the first pair of fictitious values

Let us consider a 3D fourth-order MIB scheme. The first step is to calculate the first pair of fictitious values
by using fourth-order finite difference stencils to discretize interface jump conditions.

Unlike in the second-order MIB scheme, u+, u�, uþy and u�y are now represented by five-point finite differ-
ence schemes
Fig. 7
(i, j � 1
are in
referen
uþ ¼ ðw0;j�3;w0;j�2;w0;j�1;w0;j;w0;jþ1Þ � ðui;j�3;k; ui;j�2;k; ui;j�1;k; ui;j;k; fi;jþ1;kÞT;
u� ¼ ðw0;j;w0;jþ1;w0;jþ2;w0;jþ3;w0;jþ4Þ � ðfi;j;k; ui;jþ1;k; ui;jþ2;k; ui;jþ3;k; ui;jþ4;kÞT;
uþy ¼ ðw1;j�3;w1;j�2;w1;j�1;w1;j;w1;jþ1Þ � ðui;j�3;k; ui;j�2;k; ui;j�1;k; ui;j;k; fi;jþ1;kÞT;
u�y ¼ ðw1;j;w1;jþ1;w1;jþ2;w1;jþ3;w1;jþ4Þ � ðfi;j;k; ui;jþ1;k; ui;jþ2;k; ui;jþ3;k; ui;jþ4;kÞT:

ð22Þ
To approximate uþz or u�z with the fourth-order accuracy, we need five u values along the auxiliary line y = yo

on the y–z plane, see Fig. 7. These values are approximated by 20 more auxiliary points. In the situation shown
in Fig. 7, u�z can be represented as follows:
u�z ¼ ðw1;k�1;w1;k;w1;kþ1;w1;kþ2;w1;kþ3Þ � ðui;o;k�1; ui;o;k; ui;o;kþ1; ui;o;kþ2; ui;o;kþ3ÞT; ð23Þ

where
ui;o;k�1 ¼ ðw0;jþ1;w0;jþ2;w0;jþ3;w0;jþ4;w0;jþ5Þ � ðui;jþ1;k�1; ui;jþ2;k�1; ui;jþ3;k�1; ui;jþ4;k�1; ui;jþ5;k�1ÞT;
ui;o;k ¼ ðw0;j;w0;jþ1;w0;jþ2;w0;jþ3;w0;jþ4Þ � ðfi;j;k; ui;jþ1;k; ui;jþ2;k; ui;jþ3;k; ui;jþ4;kÞT;
ui;o;kþ1 ¼ ðw0;jþ1;w0;jþ2;w0;jþ3;w0;jþ4;w0;jþ5Þ � ðui;jþ1;kþ1; ui;jþ2;kþ1; ui;jþ3;kþ1; ui;jþ4;kþ1; ui;jþ5;kþ1ÞT;
ui;o;kþ2 ¼ ðw0;j;w0;jþ1;w0;jþ2;w0;jþ3;w0;jþ4Þ � ðui;j;kþ2; ui;jþ1;kþ2; ui;jþ2;kþ2; ui;jþ3;kþ2; ui;jþ4;kþ2ÞT;
ui;o;kþ3 ¼ ðw0;j�1;w0;j;w0;jþ1;w0;jþ2;w0;jþ3Þ � ðui;j�1;kþ3; ui;j;kþ3; ui;jþ1;kþ3; ui;jþ2;kþ3; ui;jþ3;kþ3; ui;jþ4;kþ3ÞT:
Similarly, u�x can also be computed along the auxiliary line y = yo on the x–y plane, the dashed line shown
in Fig. 7. Then, by solving Eqs. (2) and (12) with l = 1 and m = 5, two fictitious values fi,j,k and fi,j+1,k can be
easily represented in terms of the function values of 48 nearby grid points.

2.6.2. Iterative generation of other fictitious values
Let us consider a typical case as shown in Fig. 7, in order to discretize uyy at point (i, j,k) by central finite

difference schemes with nth-order accuracy, n
2

fictitious values on the right side of point (i, j,k) are required. An
iterative scheme is applied to determine the rest of fictitious values. The order of generating fictitious values is
illustrated in Fig. 8.

Here, u+, u�, uþy and u�y are represented by six-point finite difference schemes, which include the second pair
of fictitious values fi,j�1,k and fi,j+4,k
. Illustration of a fourth-order MIB scheme. The y-mesh line intersects the interface at (xo,yo,zo). A set of irregular points
,k), (i, j,k), (i, j + 1,k) and (i, j + 2,k), in red d, is on the y-mesh line. Type I auxiliary points are in blue m. Type II auxiliary points

blue d. Auxiliary lines, in red dashed lines along the x- and z-directions, are used for computing ux and uz. (For interpretation of the
ces to color in this figure legend, the reader is referred to the web version of this article.)



Fig. 8. Illustration of iterative schemes. The y-mesh line intersects the interface at (xo,yo,zo). The fictitious values at d points are
generated pairwisely. The order of generating fictitious values is indicated by the numbers on the upper right corner of d.
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uþ ¼ ðw0;j�3;w0;j�2;w0;j�1;w0;j;w0;jþ1;w0;jþ2Þ � ðui;j�3;k; ui;j�2;k; ui;j�1;k; ui;j;k; fi;jþ1;k; fi;jþ2;kÞT;
u� ¼ ðw0;j�1;w0;j;w0;jþ1;w0;jþ2;w0;jþ3;w0;jþ4Þ � ðfi;j�1;k; fi;j;k; ui;jþ1;k; ui;jþ2;k; ui;jþ3;k; ui;jþ4;kÞT;
uþy ¼ ðw1;j�3;w1;j�2;w1;j�1;w1;j;w1;jþ1;w1;jþ2Þ � ðui;j�3;k; ui;j�2;k; ui;j�1;k; ui;j;k; fi;jþ1;k; fi;jþ2;kÞT;
u�y ¼ ðw1;j�1;w1;j;w1;jþ1;w1;jþ2;w1;jþ3;w1;jþ4Þ � ðfi;j�1;k; fi;j;k; ui;jþ1;k; ui;jþ2;k; ui;jþ3;k; ui;jþ4;kÞT:

ð24Þ
In these equations, fi,j+1,k and fi,j,k are resolved earlier, and are used as secondary fictitious values, i.e., the fic-
titious values that are used to resolve other fictitious values.

The approximation of uþz or u�z is still given by Eq. (23). The only difference is that here ui,o,k is given by the
following equation
ui;o;k ¼ ðw0;j�1;w0;j;w0;jþ1;w0;jþ2;w0;jþ3;w0;jþ4Þ � ðfi;j�1;k; fi;j;k; ui;jþ1;k; ui;jþ2;k; ui;jþ3;k; ui;jþ4;kÞT:

Similarly, u�x can be computed along the auxiliary line y = yo in the x–y plane. Then, by solving Eqs. (2) and

(12) with l = 1 and m = 5 again, two more fictitious values fi,j�1,k and fi,j+2,k can be easily represented in terms
of the function values of 48 points around them and the secondary fictitious values fi,j,k and fi,j+1,k. In addition,
it may be noticed that fi,j,k and fi,j+1,k are also functions of the same 48 surrounding points. Therefore, the
newly found fictitious values fi,j�1,k and fi,j+2,k can be discretized in terms of the function values of 48 sur-
rounding grid points.

All the other fictitious values labeled in Fig. 8 can be systematically found in a similar manner. It is impor-
tant to note that the accuracy of the ith pair of fictitious values is restricted by the discretization accuracy of
the first pair of fictitious values. Therefore, in order to obtain sixth-order schemes, a seven-point finite differ-
ence stencil should be used to generate the first pair of fictitious values.

2.6.3. High order discretization of elliptic equations

The fourth-order discretization of Eq. (1) at point (i, j,k) is then given by
bxux þ buxx þ byuy þ buyy þ bzuz þ buzz � juði; j; kÞ ¼ qði; j; kÞ; ð25Þ
where
ux ¼ ðw1;i�2;w1;i�1;w1;i;w1;iþ1;w1;iþ2Þ � ð~ui�2;j;k; ~ui�1;j;k; ui;j;k; ~uiþ1;j;k; ~uiþ2;j;kÞT;
uxx ¼ ðw2;i�2;w2;i�1;w2;i;w2;iþ1;w2;iþ2Þ � ð~ui�2;j;k; ~ui�1;j;k; ui;j;k; ~uiþ1;j;k; ~uiþ2;j;kÞT;
uy ¼ ðw1;j�2;w1;j�1;w1;j;w1;jþ1;w1;jþ2Þ � ð~ui;j�2;k; ~ui;j�1;k; ui;j;k; ~ui;jþ1;k; ~ui;jþ2;kÞT;
uyy ¼ ðw2;j�2;w2;j�1;w2;j;w2;jþ1;w2;jþ2Þ � ð~ui;j�2;k; ~ui;j�1;k; ui;j;k; ~ui;jþ1;k; ~ui;jþ2;kÞT;
uz ¼ ðw1;k�2;w1;k�1;w1;k;w1;kþ1;w1;kþ2Þ � ð~ui;j;k�2; ~ui;j;k�1; ui;j;k; ~ui;j;kþ1; ~ui;j;kþ2ÞT;
uzz ¼ ðw2;k�2;w2;k�1;w2;k;w2;kþ1;w2;kþ2Þ � ð~ui;j;k�2; ~ui;j;k�1; ui;j;k; ~ui;j;kþ1; ~ui;j;kþ2ÞT

ð26Þ
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and
~ul;m;n ¼
ul;m;n if ðl;m; nÞ and ði; j; kÞ in the same subdomain;

fl;m;n otherwise:

�
ð27Þ
Obviously, the 3D MIB procedure outlined here is systematic and is of arbitrarily high order accuracy, in prin-
ciple. In practical applications, complex interface and geometric singularities give rise to the difficulty of find-
ing required auxiliary points. A wide variety of MIB techniques developed in our earlier work [69,73,74] and in
the present work will alleviate this difficulty.

As shown in an earlier section, it is possible to slightly alleviate the difficulty of finding required auxiliary
points by using non-central or one-sided finite difference discretizations near the interface. This is similar to
our MIB treatment of boundary conditions [72]. However, the difficulty persists for sharp-edged and
sharp-tipped interfaces. In the following section, we explore the capability and examine the limitation of
the proposed MIB method.

3. Results and discussion

In this section, we examine the convergence order, test the accuracy, validate the matrix optimization and
demonstrate the capability of the proposed MIB II schemes. The impact of the proposed algorithm acceler-
ation is studied with the molecular surfaces of a diatom and a protein. Molecular surfaces are generated with
the MSMS program [60] with probe radius 1.4 and density 10. Reported CPU time is recorded on an AMD
Turion 64� MT-30 laptop with 1.6 GHz clock speed. The ability of the proposed MIB II for handling geo-
metric singularities is tested with systems of two, three and eighteen intersecting spheres (van der Waals sur-
faces). Both molecular surfaces and van der Waals surfaces are very important to the theoretical modeling of
biophysics and structural biology. Comparison is made to our earlier MIB technique, the MIB I [75], in which
the matrix is not optimized and interface singularities are not treated. A challenging test case with a missile
interface is provided to demonstrate the robustness of the MIB II on severe geometric singularities. The
numerical tests on the fourth-order MIB method are carried out. Five different interfaces are used and oscil-
latory solutions are compared. Moreover, cases with variable diffusion coefficients and non-zero linear term
are studied. Finally, we demonstrate the sixth-order MIB scheme with three test cases. A detailed comparison
on the performance of second-, fourth- and sixth-order MIB schemes has been provided. To analyze the
numerical performance of our MIB schemes, we use two error measurements, the maximum absolute error
L1 and the surface maximum absolute error E1
L1 ¼ max
X
juðx; y; zÞ � uexðx; y; zÞj;

E1 ¼ max
C
juðx; y; zÞ � uexðx; y; zÞj;

ð28Þ
where u and uex are numerical and exact solutions, respectively. Here E1 is computed over all the irregular
points near the interface C where the modified difference schemes are used. In many surface error maps,
the difference, u(x,y,z) � u ex(x,y,z), is plotted. The standard preconditioned biconjugate gradient (BiCG)
is used for solving the linear algebraic equation system and the tolerance of the BiCG iterations is set to be
1.0 · 10�6 in all test cases of second-order accuracy, and 1.0 · 10�14 in all test cases of higher-order accuracy.
The diagonal of the matrix is used as the preconditioner. The number of BiCG iterations, NBiCG, is listed for
some test cases to access the speed of convergence. The order of convergence is reported for the L1 errors in
many cases. In this section, we denote the subdomain enclosing the subjects of interest, such as molecules and
missiles, as X� and the rest as X+.

3.1. Case 1: Matrix optimization

The different selections of subdomains, sets of mesh lines and sets of auxiliary points are compared in the
following test case. In this study, a smooth interface as shown in Fig. 9 is used to avoid the effect of interface
singularities. The exact solutions as shown in Fig. 9a are given by
u� ¼ 10 cos x cos y cos zþ 20; uþ ¼ 10ðxþ y þ zÞ þ 1 ð29Þ



Fig. 9. Surface maps of the exact solution, (a), and numerical errors, (b), for the molecular surface of a diatom of atomic radius 1.5 Å with
atoms centered at (�1.52,0,0) and (1.35,0,0), respectively.
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with coefficients
Table
Compa

Step 2

(a)

(b)

(c)

Auxilia
b� ¼ 1; bþ ¼ 80; and j ¼ 0: ð30Þ

The source term q(x,y,z) and interface conditions [u], [bun] can be easily derived from the exact solutions. The
computational domain is set to [�6,6] · [�4,5] · [�4,4].

Table 1 gives a comparison of numerical errors, convergence orders, number of iterations and CPU time for
six different combinations of Step 1 and Step 2 as illustrated in Section 2.3. The preferred auxiliary point sets
(i) and (ii) are used in this comparison whenever possible. The L1 orders of convergence are quite similar in all
combinations and the designed second-order is numerically confirmed. In terms of numerical errors, different
choices of mesh line sets in Step 2 do not affect much the accuracy. However, the selection of X� in Step 1
leads to slightly larger errors, probably because of the geometric constraints of X�. The most significant dif-
ference is in the number of biconjugate gradient iterations and CPU time. The proposed mesh line set (a)
requires 30–50% fewer NBiCG and less CPU time than other mesh line sets, indicating the impact of proposed
optimization schemes. Moreover, the selection of X� in Step 1 results in fewer NBiCG in most cases, possibly
because X� is the subdomain enclosed by the interface, and the auxiliary points selected from X� is therefore
more compactly distributed than those selected from X+.

Table 2 compares six different combinations of Step 2 and Step 3 as illustrated in Section 2.3 with a fixed
subdomain X+. It is seen that both iteration number NBiCG and numerical errors increase slightly when non-
compact auxiliary points are selected in Step 3. However, no significant difference is observed. Comparing
Tables 1 and 2, the selection of Step 2 is the dominant factor for the speed of convergence. In order to achieve
the best result in terms of both numerical accuracy and convergence speed, the combination of subdomain X+,
mesh line set (a) and auxiliary point sets (i) and (ii) is preferred. Fig. 9b illustrates the surface map of the
numerical errors obtained from this preferred selection at h = 0.25. It is evident that most errors are distrib-
uted around the extrema of the solution.
1
rison of different choices made for Step 1 (X+ or X�) and Step 2 (mesh line sets as shown in Fig. 3)

h Step 1: X+ Step 1: X�

L1 E1 NBiCG CPU(s) Order L1 E1 NBiCG CPU(s) Order

0.5 1.3e�1 5.7e�2 83 0.6 1.3e�1 1.3e�1 90 0.6
0.25 3.4e�2 9.4e�3 168 8.8 1.9 3.9e�2 3.9e�2 169 8.8 1.7
0.125 8.9e�3 1.5e�3 337 133.9 1.9 8.6e�3 8.6e�3 338 135.0 2.2

0.5 1.3e�1 5.7e�2 133 0.9 2.6e�1 2.6e�1 95 0.7
0.25 3.9e�2 3.9e�2 220 11.3 1.9 4.7e�2 4.7e�2 182 9.4 2.5
0.125 8.8e�3 1.5e�3 444 175.9 2.0 9.4e�3 8.1e�3 348 139.0 2.3

0.5 1.3e�2 6.7e�2 169 1.1 2.6e�1 2.6e�1 95 0.7
0.25 3.4e�2 9.4e�3 218 11.2 1.9 4.7e�2 4.7e�2 182 9.3 2.5
0.125 8.8e�3 1.5e�3 456 181.0 1.9 9.4e�3 8.1e�3 348 136.6 2.3

ry point sets (i) and (ii) as shown in Fig. 4 are used for Step 3 whenever they are available.



Table 2
Comparison of different choices made for Step 2 (mesh line sets as shown in Fig. 3) and Step 3 (auxiliary point sets as shown in Fig. 4)

Step 2 h Step 3: (i) and (ii) Step 3: (iii) and (iv)

L1 E1 NBiCG CPU(s) Order L1 E1 NBiCG CPU(s) Order

(a) 0.5 1.3e�1 5.7e�2 83 0.6 1.3e�1 5.7e�2 85 0.6
0.25 3.4e�2 9.4e�3 168 8.8 1.9 3.4e�2 9.4e�3 172 8.8 1.9
0.125 8.9e�3 1.5e�3 337 133.9 1.9 9.0e�3 1.4e�3 355 139.2 1.9

(b) 0.5 1.3e�1 5.7e�2 133 0.9 1.3e�1 5.7e�2 143 0.9
0.25 3.9e�2 3.9e�2 220 11.3 1.9 3.4e�2 9.4e�3 221 11.2 1.9
0.125 8.8e�3 1.5e�3 444 175.9 2.0 8.9e�3 1.6e�3 449 175.0 1.9

(c) 0.5 1.3e�2 6.7e�2 169 1.1 1.5e�1 1.5e�1 201 1.3
0.25 3.4e�2 9.4e�3 218 11.2 1.9 3.4e�2 9.4e�3 224 11.3 2.1
0.125 8.8e�3 1.5e�3 456 181.0 1.9 9.0e�3 1.7e�3 461 179.6 1.9

Subdomain X+ is used.
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Due to the simple geometry, the difference of various selections is not very obvious. To better test our
method, we consider a more complex system, the molecular surface of a protein whose coordinates are
obtained from the Protein Data Bank (PDB ID: 2pde). To obtain a full all-atom model for the protein, all
attached water molecules are cleaned and hydrogen atoms were added. Atomic van der Waals radii defining
the dielectric boundary were taken from the CHARMM22 force field [48], and the molecular surface is
generated by the MSMS [60]. It is well-known that the molecular surface definition admits cusps and sharp
self-intersecting surfaces [60]. This test is motivated by the electrostatic analysis of biomolecules in the implicit
solvent model in structural biology. A detailed account of this aspect can be found in Ref. [70]. The exact solu-
tions for this system are still given by Eqs. (29) and (30), and illustrated in Fig. 10a. It is seen that the molec-
ular surface of protein 2pde with 667 atoms has a very irregular interface with geometric singularities. The
computational domain is set to [�16,16] · [�20,15] · [�17,19] Å3, which is slightly larger than the domain
of the molecular surface. All calculations are performed at the mesh size of h = 0.5 Å. Table 3 shows 12 dif-
ferent combinations of subdomains, mesh line sets and auxiliary point sets. The improvement by using mesh
line set (a) over that of (b) or (c) is more obvious in this test case. Mesh line sets (b) and (c) require up to 30
times more NBiCG than that required by mesh line set (a) given the same combination of Step 1 and Step 3.
Moreover, mesh line set (a) is consistently more accurate than mesh line sets (b) and (c). Table 3 also confirms
that the combination of subdomain X+, mesh line set (a) and auxiliary point sets (i) and (ii) is the best choice
for faster convergence and higher accuracy. A good alternative is the combination of X�, mesh line set (a) and
auxiliary point sets (i) and (ii).
Fig. 10. Surface maps of the exact solution, (a), and numerical errors, (b), for the molecular surface of protein 2pde.



Table 3
Comparison of different choices made for subdomains, mesh line sets and auxiliary point sets

Step 3 Step 2 Step 1: X+ Step 1: X�

L1 E1 NBiCG CPU(s) L1 E1 NBiCG CPU(s)

(i) and (ii) (a) 2.29e�1 1.15e�1 294 77 7.65e�1 7.65e�1 285 75
(b) 3.85e�1 3.85e�1 2051 579 9.51e�1 9.51e�1 331 88
(c) 3.63e�1 3.63e�1 10812 2675 9.49e�1 9.49e�1 310 86

(iii) and (iv) (a) 4.22e�1 4.22e�1 322 85 9.62e�1 9.62e�1 300 79
(b) 6.66e�1 6.66e�1 3244 815 1.47e�0 1.47e�0 324 85
(c) 5.96e�1 5.96e�1 4051 1010 1.67e�0 1.67e�0 316 84

The interface is defined by the molecular surface of protein 2pde, shown in Fig. 10. The exact solutions are given by Eqs. (29) and (30).
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The L1 order of convergence is investigated for this test case in Table 4. Mesh line set (a) is used in all the
cases in Table 4. It can be seen that second-order convergence is achieved in all four combinations although
the numerical errors vary in different combinations. The combination of subdomain X+ and auxiliary point
sets (i) and (ii) is still the best choice while the combination of subdomain X� and point sets (iii) and (iv) gives
similar numerical errors at h = 0.25.

The exact solution is mapped onto the interface in Fig. 10a. The numerical errors obtained with the best
combination and h = 0.5 Å are mapped on the interface in Fig. 10b. It can be seen that the numerical errors
are about 0.3% of the original solution at h = 0.5 Å (note the difference in scale). Another interesting point is
that there is a good correlation in the color distribution in two figures, indicating that numerical errors are
mostly induced by the amplitude variation of the solution instead of the geometric variation of the interface.
The matrix optimization and the treatment of geometric singularities proposed in this paper underpin our
recent success in solving Poisson–Boltzmann equation for electrostatic analysis of biomolecules [70].

3.2. Case 2: Validation on interfaces with geometric singularities

The performance of the present MIB method on interface singularities is tested by using the van der Waals
surfaces of three different systems shown in Fig. 11. These interfaces are composed of spheres with their inter-
secting sections removed. Singularities are generated at the intersecting wedges and tips as shown in Fig. 12,
which gives the cross-section view of the interfaces. Fig. 12a indicates a sharp wedge generated by the inter-
secting of two spheres. Fig. 12b illustrates a sharp tip and sharp wedges generated by the intersection of three
spheres.

The same exact solutions as those in Case 1, given by Eqs. (29) and (30), are employed in the present test
examples. The computational domains are [�5,4] · [�3,3] · [�3,3], [�5,4] · [�3,5] · [�3,3] and
[�6,4] · [�4,5] · [�5,4] for three test cases whose interfaces are given in Fig. 11a–c, respectively. The
numerical errors are computed at mesh sizes h = 0.5, 0.25 and 0.125 by using the present MIB method
(MIB II) and our earlier MIB method (MIB I), in which the surface singularities are treated by simply
replacing unknown fictitious values with the values at neighbor points. Table 5 lists the overall maximum
Table 4
Order of convergence test on selections of type I auxiliary points using different combinations of Step 1 and Step 3

Step 3 Step 1: X+ Order Step 1: X� Order

h L1 E1 NBiCG L1 E1 NBiCG

(i) and (ii) 0.5 2.29e�1 1.15e�1 294 2.0 7.65e�1 7.65e�1 285 1.9
0.25 5.87e�2 1.86e�2 537 2.08e�1 2.08e�1 551

(iii) and (iv) 0.5 4.22e�1 4.22e�1 322 2.8 9.62e�1 .62e�1 300 2.7
0.25 5.86e�2 4.91e�2 575 1.49e�1 1.49e�1 552

Mesh line set (a) is used in all the calculations. The interface is defined by the molecular surface of protein 2pde, shown in Fig. 10. The
exact solutions are given by Eqs. (29) and (30).



Fig. 11. Interface of intersecting spheres. (a) two intersecting spheres of radius 1.5 with centers (�1.52,0,0) and (1.35,0,0). (b) three
intersecting spheres of radius 1.5 with centers (�1.52,0,0), (1.35,0,0) and (0,1.62,0). (c) 18 intersecting spheres. The coordinates of the center
and radius of each spheres are given in the form of (x,y,z, r) as follows: (�2.0270,0.9540,�0.6510,1.7), (�1.6690,0.2340,0.6650,1.7),
(�0.4530,�0.6870,0.4410,1.7), (0.7510,0.1480,�0.0400,1.7), (0.3930,0.8680,�1.3560,1.7), (�0.8230,1.7880,�1.1320,1.7), (�2.2840,
0.2080,�1.4180,1.2), (�2.8880,1.6170,�0.4830,1.2), (�2.5270,�0.3680,0.9970,1.2), (�1.4260,0.9800,1.4350,1.2), (�0.1960,�1.1890,
1.3850,1.2), (�0.7010,�1.4410,�0.3200,1.2), (1.0070,0.8940,0.7270,1.2), (1.6120,�0.5150,minus0.2080,1.2), (0.1490,0.1210,�2.1260,
1.2), (1.2510,1.4700,�1.6880,1.2), (�1.0810,2.2910,�2.0760,1.2), and (�0.5750,2.5430,�0.3710,1.2).

Fig. 12. Cross-section views of interface generated by intersecting spheres. (a) A cross-section of Fig. 11a; (b) a cross-section of Fig. 11b.

Table 5
Convergence test on interface of intersecting spheres

h Case 2(a) Case 2(b) Case 2(c)

MIB II MIB I MIB II MIB I MIB II MIB I

0.5 L1 2.57e�1 1.55 2.14e�1 1.05 2.38e�1 2.46
E1 2.57e�1 1.55 2.14e�1 1.05 1.09e�1 2.46

0.25 L1 3.21e�2 1.00 3.73e�2 1.21 5.83e�2 2.86
E1 2.28e�2 1.00 2.57e�2 1.21 4.96e�2 2.86
Order 3.0 0.6 2.5 �0.2 2.0 �0.2

0.125 L1 7.21e�3 1.21 8.66e�3 1.16 1.42e�2 1.29
E1 5.23e�3 1.21 5.58e�3 1.16 3.82e�3 1.29
Order 2.2 �0.3 2.1 0.1 2.0 1.2

Case 2(a): two intersecting spheres; Case 2(b): three intersecting spheres; Case 2(c): 18 intersecting spheres.
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absolute error L1 and the surface maximum absolute error E1. It is seen that the MIB II method achieves
the designed second-order convergence in all three test cases. In fact, the accuracy of the MIB II is inde-
pendent of the geometric complexity. At a given mesh size, the same level of accuracy is achieved by the
MIB II in all three interfaces. In contrast, the MIB I scheme does not converge because of the geometric
singularity. Moreover, L1 and E1 errors are the same in MIB I, indicating that the largest error occurs at
the interface. Since our 3D MIB I is of second-order convergence for smooth interfaces, these L1 and E1

errors must be from geometric singularities. These results demonstrate the importance of special treatments
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for geometric singularities in practical applications. Ordinary interface methods forfeit their power at sharp-
edged and sharp-tipped interfaces.

In addition, Figs. 11a and 12a show clearly that the intersecting wedges are very sharp. The MIB II method
handles this situation very well and is not subject to the critical angular limitation [69] any more. The follow-
ing test case is designed to further confirm this point.

3.3. Case 3: A missile interface

To further verify the ability of the proposed MIB scheme for treating arbitrarily complex interface singu-
larities, we consider a missile geometry which was reported by Wang and Srinivasan [67] as a challenge for grid
generation. The missile tip is very sharp and the missile fins are very thin compared to the size of the geometry,
see Fig. 13. These features normally take enormous amount of grids to reduce the local numerical errors. The
computational domain is set to [�5,49] · [�12,11] · [�12,11]. Two sets of solutions are tested on this inter-
face. The set of solutions of Case 3(a) is given by
u� ¼ cos x cos y cos z; uþ ¼ 0: ð31Þ

While Case 3(b) adopts the solution set given by Eq. (29). The coefficients b and j in these two cases are the
same as those given in Eq. (30).

The numerical errors of both cases are listed in Table 6. For both Case 2(a) and Case 2(b), their conver-
gence order from h = 0.5 to h = 0.25 is slightly lower than what is designed because it is much more compu-
tationally challenging at h = 0.25 than at h = 0.5 in the following sense. At h = 0.5, there are a fewer irregular
grid points located near the sharp edges of the missile. In other word, much sharp feature of the missile has not
been recognized by a coarse mesh yet. While when the mesh is refined to h = 0.25, the sharp feature captures
more grid points and there are more irregular points across the interface. When the mesh is refined further to
h = 0.125, the number of irregular grid points increases again. It is seen that the proposed MIB scheme is of
second-order convergence in the last mesh refinement from h = 0.25 to h = 0.125.

Fig. 13 provides the exact solution of Case 3(b) and errors obtained at three different mesh sizes. An
important feature of our results is that, the errors are distributed around the extrema of the solution. This
feature suggests that the thin fins and the sharp tip are properly treated and do not cause additional
errors in our scheme. Indeed, there is little error on the tip and the fins due to our special treatment
of singularities. The level of accuracy in Case 3(b) remains the same as that in Table 5, confirming that
interface complexity and geometric singularities do not compromise the accuracy of the proposed MIB
method.

3.4. Case 4: Fourth-order MIB scheme

Higher-order methods are particularly valuable for problems with high wavenumbers. Normally, it is dif-
ficult to construct higher-order methods for complex geometry. Moreover, the presence of interfaces will lead
to low regularity in solutions and reduce the convergence order of common higher-order schemes. Further-
more, the presence of interface singularities will reduce the convergence order of traditional interface methods
that are not designed for sharp edges and sharp tips, as shown in Table 5. Consequently, the best result in the
literature was of 0.8th order [26] for 2D elliptic equations with interface singularities before year 2005, to our
knowledge. In the present study, we demonstrate our fourth MIB method for elliptic interface problems with
moderate interface singularities.

To examine the proposed method, we first employ three typical and relatively simple test interfaces, an ellip-
soid, a cylinder and an oak acorn.

� Case 4(a): Ellipsoid
x
a

� �2

þ y
b

� �2

þ z
c

� �2

¼ 1; ð32Þ
where a ¼ 20
7
; b ¼ 25

14
and c ¼ 25

14
. The computational domain is set to [�5,5] · [�5,5] · [�5,5].



Fig. 13. A missile geometry with solution and error maps. Numerical errors are represented in seven scales. (a) exact solution mapped on
the surface of a missile; (b) numerical error obtained at h = 0.5; (c) numerical error obtained at h = 0.25; (d) numerical error obtained at
h = 0.125.

Table 6
Convergence test on missile interface shown in Fig. 13

h Case 3(a) Case 3(b)

L1 E1 Order L1 E1 Order

0.5 1.63e�2 6.01e�3 1.64e�1 6.01e�2
0.25 4.80e�3 2.52e�3 1.8 4.95e�2 2.62e�2 1.7
0.125 1.19e�3 4.44e�4 2.0 1.19e�2 4.44e�3 2.1

The exact solutions of Case 3(a) and Case 3(b) are respectively given by Eqs. (31) and (29), with coefficients defined in Eq. (30).
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� Case 4(b): Cylinder of height 2p and diameter p. The computational domain is set to
[�4,4] · [�4,4] · [�2,8.4].
� Case 4(c): Oak acorn
Fig. 14
represe
x
d

� �2

þ y
d

� �2

¼ ðz� qÞ2 if z > 0 ð33Þ
and
x2 þ y2 þ ðz� gÞ2 ¼ R2 if z 6 0; ð34Þ

where q ¼ � 6

7
; g ¼ 1

2
; R ¼ 15

7
and d ¼

ffiffiffiffiffiffiffiffiffi
R2�g2

q2

q
. The computational domain is set to

[�5,5] · [�5,5] · [�5,5]. We set solution as
u� ¼ 10 cos kx cos ky cos kzþ 20; uþ ¼ 10ðxþ y þ zÞ þ 1; ð35Þ

with coefficients prescribed by Eq. (30). These three interfaces are depicted in Fig. 14 with surface maps of
exact solutions and numerical errors computed at k = 3. The cylinder has two corners and the oak acorn
has an edge and a tip. However, these singularities are quite mild. The solution becomes oscillatory when a
large k is used. As in earlier cases, there is a good correlation between the exact solutions and the numerical
errors, indicating that the extrema of the surface errors are induced by the large amplitude of the solutions,
rather than by the geometric features.

Table 7 shows the numerical errors given by the second- and fourth-order MIB schemes. It can be seen
that the designed second- and fourth-order convergences are achieved in all the test cases. Under the same
mesh size, the numerical errors obtained by the fourth-order method are up to 1000 times smaller than
those obtained by the second-order method.
. The surface maps of exact solutions (Top row) and numerical errors (Bottom row). Numerical errors are obtained at h = 0.2 and
nted in seven scales. (a) Ellipsoid; (b) Cylinder; (c) Oak acorn.



Table 7
Convergence test of the fourth-order MIB scheme (Case 4)

h Second-order Fourth-order

L1 E1 Order L1 E1 Order

Ellipsoid k = 1 0.4 1.25e�1 2.30e�2 2.23e�3 2.23e�3
0.2 3.42e�2 3.54e�3 1.9 1.44e�4 1.13e�4 4.0
0.1 8.70e�3 5.70e�4 2.0 1.04e�5 3.50e�6 3.8

k = 3 0.4 1.02e�0 8.29e�1 3.18e�1 3.18e�1
0.2 3.32e�1 1.01e�1 1.6 1.87e�2 1.87e�2 4.1
0.1 8.45e�2 1.78e�2 2.0 1.06e�3 7.01e�4 4.1

Cylinder k = 1 0.4 1.13e�1 3.85e�2 2.11e�3 6.17e�4
0.2 3.01e�2 6.28e�3 1.9 1.28e�4 7.56e�5 4.0
0.1 7.68e�3 5.68e�4 2.0 9.01e�6 2.79e�6 3.8

k = 3 0.4 1.08e�0 9.48e�1 2.57e�1 2.57e�1
0.2 3.17e�1 1.55e�1 1.8 1.71e�2 1.71e�2 3.9
0.1 7.97e�2 2.50e�2 2.0 8.95e�4 4.77e�4 4.3

Acorn k = 1 0.2 2.24e�2 7.59e�3 1.05e�4 7.32e�5
0.1 5.69e�3 1.07e�3 2.0 6.84e�6 2.33e�6 3.9
0.05 1.43e�3 1.56e�4 2.0 4.42e�7 1.21e�7 4.0

k = 3 0.2 3.10e�1 1.68e�1 1.51e�2 1.06e�2
0.1 7.81e�2 2.57e�2 2.0 9.59e�4 4.74e�4 4.0
0.05 2.01e�2 3.52e�3 2.0 5.94e�5 2.22e�5 4.0

Three interfaces are shown in Fig. 14. The exact solutions are given by Eqs. (35) and (30).
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It remains to know whether the proposed MIB method delivers fourth-order accuracy for more complex
interface geometry and interfaces with more challenging geometric singularities. To this end, we consider
two more test cases, an apple and a flower.
� Case 4(d): Apple
1 In
q ¼ 1:9ð1� cos /Þ; ð36Þ
where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and / ¼ cos�1 z

q

� �
. The computational domain is set to [�5,5] · [�5,5] · [�8,4].

� Case 4(e): Flower
r ¼ 5

2
þ 5

7
sin 5h; � 2

3
6 z 6

2

3
; ð37Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and h ¼ tan�1 y

x

� �
. The computational domain is set to [�5,5] · [�5,5] · [�2,2].

We adopt Eqs. (29) and (30) for exact solutions and parameters, respectively. These two interfaces are
depicted in Fig. 15 with surface maps of exact solutions and numerical errors. The apple interface admits a
singularity at the origin which is computationally challenging. The flower interface is complex and non-
smooth. A 2D interface that is similar to the flower shape has been considered in our previous work [74] to
test our 2D fourth-order MIB scheme for complex interface geometry.1 Table 8 gives the convergence studies
of the proposed MIB method for these two cases. Due to complexity and large curvature of the flower inter-
face, a relatively dense grid is required to ensure the availability of auxiliary points and thus the designed
fourth-order accuracy. In both cases, the designed fourth-order convergence is achieved. For the apple inter-
face, L1 and E1 are the identical at h = 0.1, indicating that the largest absolute error occurs at the origin i.e.,
the singular point. For the flower interface, large errors occur where there are large curvatures. It is to point
out that the construction of 3D fourth-order interface methods for arbitrarily complex interface with geomet-
ric singularities is still an open problem.
Ref. [74], the interface of Example 5 should be r ¼ 1
2þ

sinð5hÞ
7 .



Fig. 15. The surface maps of exact solutions (Top row) and numerical errors (Bottom row). Numerical errors are obtained at h = 0.2 for
the apple and at h = 0.1 for the flower. All images are plotted in seven scales. (a) Apple; (b) Flower.

Table 8
Convergence test of the fourth-order MIB scheme (Case 4(d) and (e)). Two interfaces are shown in Fig. 15

h L1 E1 Order

Apple 0.4 9.83e�3 9.83e�3
0.2 1.00e�4 8.11e�5 6.6
0.1 7.15e�6 7.15e�6 3.8

Flower 0.1 1.30e�5 1.30e�5
0.05 5.73e�7 5.73e�7 4.5
0.025 1.79e�8 6.48e�9 5.0

The exact solutions are given by Eqs. (29) and (30).
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3.5. Case 5: Variable diffusion coefficients

Our previous 2D MIB method has been tested for variable diffusion coefficients and for large contrast in
diffusion coefficients. Here, we show that the present 3D MIB method works well for variable diffusion coef-
ficients, which are piecewise smooth function of positions. In order to test the performance of the MIB method
on different b(x,y,z), the following diffusion coefficients are used together with the solution given in Eq. (35)



Table
Conve

Ellipso

Acorn

Two in
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b� ¼ 1

2
ðxþ yÞ þ 10; bþ ¼ zþ 15; ð38Þ
where we set j = 0.
The interfaces of ellipsoid and acron shown in Fig. 14a and c are employed. The computational domains

are set to [�5,5] · [�5,5] · [�5,5] for both test cases. The numerical errors are given in Table 9. The compu-
tational results are of designed L1 order of convergence. The magnitudes of numerical errors are very similar
to those in Table 7, indicating that the proposed method is robust against variable coefficients.

3.6. Case 6: Non-zero linear term

It is very important to include non-zero j(x,y,z) in many practical problems. The performance of the pres-
ent MIB method is tested in the following two cases

� Case 6(a):
j�ðx; y; zÞ ¼ 10 expð�xÞ; jþðx; y; zÞ ¼ 20y2: ð39Þ

� Case 6(b):
j�ðx; y; zÞ ¼ 1000 expð�xÞ; jþðx; y; zÞ ¼ 2000y2: ð40Þ
The exact solution u(x,y,z) is given in Eq. (35) with k = 1 and the diffusion coefficient b(x,y,z) is given in
Eq. (30). The source term q(x,y,z) and jump conditions can therefore be easily derived. The second- and
fourth-order MIB schemes are applied to solve these two cases with the acorn interface given in Eq. (33).
The computational domain is set to [�5,5] · [�5,5] · [�5,5].

Table 10 shows that the present MIB scheme achieves the designated order of convergence in both cases. It
is interesting to note that when j is increased 100 times from Case 6(a) to Case 6(b), the MIB method con-
verges in Case 6(b) twice as fast as it does in Case 6(a), which is due to the fact that the matrix in Case
6(b) is more banded.

3.7. Case 7: Sixth-order MIB scheme

Finally, we test the convergence property of our sixth-order MIB scheme. Three different interfaces, a
sphere, an ellipsoid and a diatomic molecule are considered. Different solutions are prescribed for these inter-
faces to further validate the present MIB method.
9
rgence test on variable diffusion coefficients (Case 5)

h Second-order Fourth-order

L1 E1 Order L1 E1 Order

id k = 1 0.4 2.00e�1 1.52e�1 1.76e�2 1.76e�2
0.2 4.76e�2 3.02e�2 2.1 1.03e�3 1.03e�3 4.1
0.1 1.14e�2 5.25e�3 2.1 4.92e�5 4.92e�5 4.4

k = 3 0.4 2.39e�0 2.39e�0 1.03e�0 1.03e�0
0.2 4.57e�1 4.13e�1 2.4 1.25e�1 1.25e�1 3.0
0.1 9.22e�2 6.87e�2 2.3 5.19e�3 5.19e�3 4.6

k = 1 0.2 3.79e�2 2.70e�2 4.82e�4 4.82e�4
0.1 9.17e�3 5.81e�3 2.1 2.52e�5 2.52e�5 4.3
0.05 2.32e�3 1.39e�3 2.0 1.82e�6 1.82e�6 3.8

k = 3 0.2 4.01e�1 3.10e�1 7.09e�2 7.09e�2
0.1 9.74e�2 6.27e�2 2.0 3.67e�3 3.67e�3 4.3
0.05 2.43e�2 1.27e�2 2.0 2.00e�4 2.00e�4 4.2

terfaces are shown in Fig. 14a and c. The exact solutions are given by Eqs. (35) and (38).



Table 10
Convergence test on the non-zero linear term with the acorn interface shown in Fig. 14c

h Second-order Fourth-order

L1 E1 NBiCG Order L1 E1 NBiCG Order

Case 6(a) 0.2 7.99e�3 3.28e�3 243 5.98e�5 5.98e�5 283
0.1 2.02e�3 4.72e�4 478 2.0 2.55e�6 2.34e�6 592 4.6
0.05 5.07e�4 7.79e�5 969 2.0 1.62e�7 1.19e�7 1278 4.0

Case 6(b) 0.2 1.27e�3 1.27e�3 92 1.52e�5 1.52e�5 114
0.1 3.08e�4 3.08e�4 181 2.0 1.37e�6 1.37e�6 239 3.5
0.05 5.14e�5 5.14e�5 389 2.6 7.98e�8 7.98e�8 518 4.1

The exact solutions are given by Eqs. (35) and (30) with j(x,y,z) redefined by Eqs. (39) and (40) for Case 6(a) and Case 6(b), respectively.
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� Case 7(a): Spherical interface. The interface is a sphere of radius 2. The diffusion coefficients are given by
Eq. (30). The solutions are given as
Table
Conve

k = 1

k = 3

The ex
u� ¼ cos kx cos ky cos kz; uþ ¼ 0: ð41Þ

The computational domain is set to [�5,5] · [�5,5] · [�5,5].
� Case 7(b): Ellipsoidal interface. The ellipsoidal interface is given by Eq. (32). The exact solution and var-

iable diffusion coefficients are given as the following:
u� ¼ cos kx cos ky cos kz; uþ ¼ exp � x2 þ y2 þ z2

20

� 	
; ð42Þ

b� ¼ ðxþ yÞ=2þ 10; bþ ¼ zþ 15; j ¼ 0: ð43Þ
The computational domain is set to [�5,5] · [�5,5] · [�5,5].
� Case 7(c): Molecular surface of a diatom. This interface is defined by the molecular surface of a diatom,

shown in Fig. 9. The exact solutions are given by Eqs. (35) and (30) with k = 3 (Note that these exact solu-
tions are not the ones shown in Fig. 9a). Unlike two other cases, this interface contains concave surface
curves.The computational domain is set to [�6,6.16] · [�4,4.96] · [�4,4].

Table 11 provides the results of convergence tests for Case 7(a). It is seen that the designed L1 orders of
convergence are achieved in these MIB schemes. The sixth-order method is up to 107 times more accurate that
the second one, demonstrating the advantage of higher-order schemes. The L1 and E1 errors in the sixth-order
scheme are identical, indicating that maximum errors are generated from the interface.

The convergence results for Case 7(b) are listed Table 12. Similar to the last case, the designed orders of
convergence are numerically confirmed for all MIB schemes. It is noted that L1 and E1 errors become iden-
tical in both fourth- and sixth-order schemes. Therefore, the interface errors are the major error source in this
case.
11
rgence comparison of the second-, fourth- and sixth-order MIB schemes on a spherical interface (Case 7(a))

h Second-order Fourth-order Sixth-order

L1 E1 Order L1 E1 Order L1 E1 Order

0.2 3.5e�3 2.0e�4 1.5e�5 1.5e�5 5.3e�7 5.3e�7
0.1 9.0e�4 2.7e�5 2.0 1.0e�6 6.1e�7 3.8 5.4e�9 5.4e�9 6.6
0.05 2.3e�4 3.8e�6 2.0 7.0e�8 2.4e�8 3.9 5.3e�11 5.3e�11 6.7

0.2 3.3e�2 9.8e�3 2.8e�3 2.8e�3 7.7e�4 7.7e�4
0.1 8.1e�3 1.6e�3 2.0 1.0e�4 1.0e�4 4.8 8.3e�6 8.3e�6 6.6
0.05 2.0e�3 2.6e�4 2.0 5.8e�6 3.2e�6 4.1 5.8e�8 5.8e�8 7.2

act solutions are given by Eqs. (41) and (30).



Table 12
Convergence comparison of the second-, fourth- and sixth-order MIB schemes on an ellipsoid interface (Case 7(b)) as shown in Fig. 14a

h Second-order Fourth-order Sixth-order

L1 E1 Order L1 E1 Order L1 E1 Order

k = 1 0.2 4.9e�3 3.2e�3 9.9e�5 9.9e�5 3.5e�6 3.5e�6
0.1 1.2e�3 5.7e�4 2.1 4.7e�6 4.7e�6 4.4 4.2e�8 4.2e�8 6.4
0.05 2.9e�4 1.0e�4 2.1 2.2e�7 2.2e�7 4.4 5.1e�10 5.1e�10 6.4

k = 3 0.2 4.6e�2 4.1e�2 1.3e�2 1.3e�2 2.7e�3 2.7e�3
0.1 9.2e�3 6.8e�3 2.3 5.2e�4 5.2e�4 4.6 3.7e�5 3.7e�5 6.2
0.05 2.0e�3 1.5e�3 2.2 2.1e�5 2.1e�5 4.7 3.5e�7 3.5e�7 6.7

The exact solutions are given by Eqs. (42) and (43).

Table 13
Convergence comparison of the second-, fourth- and sixth-order MIB schemes on a diatomic interface (Case 7(c)) as shown in Fig. 9

Scheme h L1 E1 Order NBiCG

Second-order 0.16 2.11e�1 8.27e�2 296
0.08 5.32e�2 1.08e�2 2.0 529
0.04 1.34e�2 2.34e�3 2.0 2072

Fourth-order 0.16 1.12e�2 1.12e�2 329
0.08 4.14e�4 2.04e�4 4.8 670
0.04 2.62e�5 1.05e�5 4.0 2613

Sixth-order 0.16 5.20e�3 5.20e�3 409
0.08 2.56e�5 2.56e�5 7.7 824
0.04 1.13e�6 1.13e�6 4.5 3575

The exact solutions are given by Eqs. (35) and (30) with k = 3.
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Finally, Table 13 shows the comparison of three MIB schemes for the molecular surface of the diatom stud-
ied in Case 1. This problem is more difficult than the last two test cases because of the presence of concave
curves in the interface. The mesh sizes are chosen slightly smaller than those used in the earlier examples to
avoid the difficulty of finding insufficient number of auxiliary grid points. The number of iteration NBiCG is
also provided for each computation. It is seen that the fourth- and sixth-order MIB schemes require slightly
larger NBiCG than the second-order scheme does, because more auxiliary points are involved to represent a
fictitious value in higher-order schemes. Under the same mesh size h, the CPU times required for all iterations
are about the same since the size of the matrix is the same for a given h. The major factor that determines
NBiCG is the matrix size, instead of the order of the scheme. Therefore, the proposed higher-order MIB
schemes do not cause additional convergence problems. At h = 0.16, the sixth-order scheme delivers the same
level of accuracy as the second-order scheme does at h = 0.04, indicating the efficiency of higher-order meth-
ods. Similar to the last two cases, the L1 and E1 errors in the sixth-order scheme are identical. This study sug-
gests that the construction of sixth-order 3D interface methods for elliptic equations with arbitrarily curved
smooth interfaces remains an open problem.

4. Conclusion

This paper introduces the three-dimensional (3D) higher-order matched interface and boundary (MIB)
method for solving elliptic equations with discontinuous coefficients and geometric singularities. Our previous
higher-order MIB methods in 1D [71] and 2D [73,74] have been generalized to 3D. The present MIB method is
of fourth-order convergence for complex interfaces with moderate geometric singularities, and of six-order
convergence for smooth interfaces. Moreover, a recently proposed 2D second-order MIB scheme [69] for solv-
ing elliptic equations with discontinuous coefficients and interface singularities is extended to a 3D MIB
scheme of up to fourth-order convergence for interface singularities. Non-smooth interfaces are notoriously
challenging and the best result in the literature is of 0.8th-order convergence due to Hou and Liu [26]. New
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algorithms, particularly the use of jump conditions at two interface intersecting points, are proposed to effec-
tively remove the critical acute angle restriction of our earlier MIB scheme [69]. The resulting MIB schemes are
able to attain second-order convergence for arbitrarily complex interfaces with sharp edges, wedges, and tips.
Furthermore, we propose a systematical procedure to make the MIB matrix optimally symmetric and banded.
Consequently, our new MIB algorithm requires a fewer number of iterations to converge by using a standard
preconditioned biconjugate gradient solver. The proposed 3D MIB schemes are extensively validated in terms
of the speed of convergence, the order of accuracy, the number of iterations and CPU time. A large variety of
numerical examples, including a protein molecular surface, a missile interface, and systems of multiple inter-
secting spheres, are utilized to validate the proposed MIB method. First known results are obtained for 3D
elliptic equations in the following three categories: solutions of second-order accuracy for arbitrarily complex
interfaces with sharp geometric singularities; solutions of fourth-order accuracy for complex interfaces with
moderate singularities; and solutions of sixth-order accuracy for smooth curved interfaces. Some new open
problems, such the construction of fourth-order 3D interface schemes for arbitrarily complex interfaces with
sharp geometric singularities and the construction of sixth-order 3D interface schemes for arbitrarily curved
smooth interfaces, are identified.

In summary, the main ideas of the present MIB method are follows. First, simple Cartesian grids are used
to avoid the time consuming grid generation even if the interface is complex and irregular. Problems that are
defined on complex geometric domains can be embedded in rectangular domains as interface problems. Sec-
ond, the standard (higher-order) central finite difference (FD) schemes are used for the discretization of the
elliptic equations in the entire domain, including the interface region. Consequently, the condition number
of the discretization matrix is relatively low, and efficient linear algebraic equation solvers can be used. More-
over, MIB schemes automatically reduce to the central FD ones when there is no interface. Third, when the
FD scheme reaches across the interface, fictitious values are used to ensure that the numerical derivative is
locally computed on a ‘‘smooth function’’ near the interface, although the true solution is either discontinuous
or continuous but not differentiable. Therefore, fictitious values are the smooth continuation of the non-
smooth function across the interface. Fourth, the fictitious values are determined by using physical jump con-
ditions that are prescribed to make the original elliptic problem well posed. Fifth, physical jump conditions are
enforced on-interface. As such, subgrid information, i.e., the solution jump and the flux jump, is built in the
interface scheme. As a result, the well-known staircase phenomenon of the FD scheme for irregular domains is
eliminated. Sixth, only the lowest order jump conditions are used to avoid the involvement of higher-order
derivatives, particularly the cross-derivative, and numerical instability. Jump conditions are discretized by
using the standard Lagrange polynomials [17]. Seventh, to construct higher-order schemes, the lowest order
jump conditions are utilized repeatedly. Eighth, although there are four available jump conditions in 3D, only
two fictitious values on a mesh line are determined at a time to avoid the calculation of two most difficult par-
tial derivatives at the interface. Consequently, a 2D or a 3D interface problem is locally reduced into 1D-like
ones. Ninth, although the MIB matrix is non-symmetric because of the use of auxiliary points for calculating
on-interface off-grid partial derivatives in the jump conditions, the flexibility in the auxiliary point selection is
utilized to make the MIB matrix optimally symmetric and banded. Tenth, a wide variety of techniques are
proposed in the MIB method to determine fictitious values [69,71,73,74], such as computing fictitious values
from a different direction, using two sets of interface jump conditions, utilizing secondary fictitious values to
evaluate primary fictitious values, etc. Finally, an interpolation formulation of the MIB method was proposed
to avoid the use of fictitious values or fictitious subdomains. We have shown that such an approach is equiv-
alent to our fictitious domain formulation [74]. It is believed that all results presented in the present paper can
be obtained by using our interpolation formulation as well. The application of the present MIB method to the
electrostatic analysis of biomolecules is reported elsewhere [70]. MIB based approaches for the simulation of
electromagnetic wave propagation and scattering, and for the computational fluid dynamics are under our
consideration.
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